                            Part  I
Raising the many-dimensional vector spaces to the rational power M/L.

                                   Vyacheslav  Telnin
                                           Abstract

      If N - dimensional vector space W can be represented as the tensor

      product of L identical n – dimensional vector spaces V, then we can

      say, that V is the W raised to the power 1/L. If we take the tensor
      product of M vector spaces V, then we get the vector space R. And
      we can say that R is the W raised to the power M/L.

1) Vector  spaces W and V.

    Let us consider W – N-dimensional generalization of our 4-dimentional vector space. And we call W as basic vector space. If we choose N such as 
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, then we can represent W as the tensor product of L identical n-dimensional vector spaces V:
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It can be written so:                        
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2) Metric tensors.

If 
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- basis of W, 
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- basis of V, then their connection can be expressed so:
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and so:
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If  
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- the metric tensor for W, and 
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- the metric tensor for V, then the scalar multiplication of (5) and (6) gives :
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And we can write:
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And
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3) Algebraic tensors.
Algebraic tensor defines the algebra of basis vectors of vector space.
Let us introduce the algebraic tensors for W and for V by this way:
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From (4), (10), (11) we can derive:
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4) Vector space R.

Now we form new vector space R so:      
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M here is any integer number. Then dimension of R is 
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If we denote the basis of R as 
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Metric tensor in R is 
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Algebraic tensor in R is 
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If we define 
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then we can find the metric and algebraic tensors for R:
                       
[image: image29.wmf])

19

(

)

(

M

b

d

b

d

q

E

E

r

b

a

b

a

×

×

=


          
[image: image30.wmf]
[image: image31.wmf])

20

(

)

(

M

b

d

c

b

d

c

f

E

E

E

Z

g

a

b

g

a

b

×

×

×

=


4) Curved W.
Let W be curved. And 
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and if 
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-algebraic tensor in uncurved space, then
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5)  New term.

And the question of naming. 
[image: image36.wmf]8

7

6

K

L

e

g

b

a

m

- COeffitient of BASIses Connection-

we will name as “COBASIC”. 
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